Repair of DNA damage caused by formaldehyde in human cells.
نویسندگان
چکیده
The alkaline elution technique was used to study repair of DNA damage caused by formaldehyde (HCHO) in human bronchial epithelial cells and fibroblasts, skin fibroblasts, and DNA excision repair-deficient skin fibroblasts from donors with xeroderma pigmentosum. Exposure of cells to HCHO resulted in DNA-protein cross-links (DPC) and DNA single-strand breaks (SSB) in all cell types. DPC were induced at similar levels and were also removed by all cell types, with a half removal time of 2 to 3 hr. HCHO caused more SSB in the normal cell types than in the xeroderma pigmentosum fibroblasts. However, in all cell types, including the xeroderma pigmentosum cells, HCHO-induced DNA SSB and DPC were removed at comparable rates. By excision repair of HCHO-induced DNA damage, normal cells generated SSB that were also readily repaired. HCHO was only moderately cytotoxic to normal bronchial epithelial cells and fibroblasts at concentrations that induced substantial DNA damage. HCHO enhanced the cytotoxicity of both ionizing radiation and N-methyl-N-nitrosourea in both cell types. The results indicate that most DPC caused by HCHO can be removed without the involvement of DNA excision repair. Furthermore, HCHO also directly causes DNA SSB as well as SSB generated indirectly during ultraviolet-type excision repair. These studies indicate the complexity of the HCHO-induced DNA damage and its repair and that HCHO may enhance the cytotoxicity of chemical and physical carcinogens in human cells.
منابع مشابه
Studies on electron beam induced DNA damage and repair kinetics in lymphocytes by alkaline comet assay
Background: Exposure to ionizing radiation is known to induce oxidative stress followed by damage to critical biomolecules like lipids, proteins and DNA through radiolysis of cellular water. Since radiation has been widely used as an important tool in therapy of cancer, the detailed investigation regarding the DNA damage and repair kinetics would help to predict the radiation sensitivity of cel...
متن کاملEffects of low dose radiation on the expression of proteins related to DNA repair requiring Caveolin-1 in human mammary epithelial cells
Background: Radiotherapy is an effective and important therapeutic method for breast cancer, but at the same time it has a radiation-induced bystander effect on normal tissue around the tumor. Repair of double-strand breaks (DSBs) by normal cells can reduce the extent of damage caused by this effect. Caveolin-1 (Cav-1) is an important regulatory molecule in cell signal transduction. However, th...
متن کاملRepair of DMA Damage Caused by Formaldehyde in Human Cells
The alkaline elution technique was used to study repair of DNA damage caused by formaldehyde (HCHO) in human bron chial epithelial cells and fibroblasts, skin fibroblasts, and DNA excision repair-deficient skin fibroblasts from donors with xeroderma pigmentosum. Exposure of cells to HCHO resulted in DNA-protein cross-links (DPC) and DNA single-strand breaks (SSB) in all cell types. DPC were ind...
متن کاملCells deficient in the FANC/BRCA pathway are hypersensitive to plasma levels of formaldehyde.
Formaldehyde is an aliphatic monoaldehyde and is a highly reactive environmental human carcinogen. Whereas humans are continuously exposed to exogenous formaldehyde, this reactive aldehyde is a naturally occurring biological compound that is present in human plasma at concentrations ranging from 13 to 97 micromol/L. It has been well documented that DNA-protein crosslinks (DPC) likely play an im...
متن کاملLow-Dose Formaldehyde Delays DNA Damage Recognition and DNA Excision Repair in Human Cells
OBJECTIVE Formaldehyde is still widely employed as a universal crosslinking agent, preservative and disinfectant, despite its proven carcinogenicity in occupationally exposed workers. Therefore, it is of paramount importance to understand the possible impact of low-dose formaldehyde exposures in the general population. Due to the concomitant occurrence of multiple indoor and outdoor toxicants, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 44 10 شماره
صفحات -
تاریخ انتشار 1984